Wnt3 signaling in the epiblast is required for proper orientation of the anteroposterior axis.

نویسندگان

  • Jeffery R Barrow
  • William D Howell
  • Michael Rule
  • Shigemi Hayashi
  • Kirk R Thomas
  • Mario R Capecchi
  • Andrew P McMahon
چکیده

The establishment of anteroposterior (AP) polarity in the early mouse epiblast is crucial for the initiation of gastrulation and the subsequent formation of the embryonic (head to tail) axis. The localization of anterior and posterior determining genes to the appropriate region of the embryo is a dynamic process that underlies this early polarity. Several studies indicate that morphological and molecular markers which define the early AP axis are first aligned along the short axis of the elliptical egg cylinder. Subsequently, just prior to the time of primitive streak formation, a conformational change in the embryo realigns these markers with the long axis. We demonstrate that embryos lacking the signaling factor Wnt3 exhibit defects in this axial realignment. In addition, chimeric analyses and conditional removal of Wnt3 activity reveal that Wnt3 expression in the epiblast is required for induction of the primitive streak and mesoderm whereas activity in the posterior visceral endoderm is dispensable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Extra-Embryonic Wnt Signaling Event Controls Gastrulation in Mice: A Dissertation

The formation of the anterior-posterior axis requires a symmetry-breaking event that starts gastrulation. Ultimately, the morphogenetic movements of gastrulation reshape the embryo to its final tri-dimensional form. In mouse embryos, the identity of the molecule that breaks the bilateral symmetry and sets in motion gastrulation remains elusive. The Wnt signaling pathway plays a pivotal role dur...

متن کامل

Ets2 is necessary in trophoblast for normal embryonic anteroposterior axis development.

Although the trophoblast is necessary for the growth, viability and patterning of the mammalian embryo, understanding of its patterning role is still rudimentary. Expression of the transcription factor Ets2 is restricted to the trophoblast in early postimplantation stages and Ets2 mutants have been previously shown to have defects in trophoblast development. We show here that Ets2 is necessary ...

متن کامل

Beta-catenin regulates Cripto- and Wnt3-dependent gene expression programs in mouse axis and mesoderm formation.

Gene expression profiling of beta-catenin, Cripto and Wnt3 mutant mouse embryos has been used to characterise the genetic networks that regulate early embryonic development. We have defined genes whose expression is regulated by beta-catenin during formation of the anteroposterior axis and the mesoderm, and have identified Cripto, which encodes a Nodal co-receptor, as a primary target of beta-c...

متن کامل

Induction and migration of the anterior visceral endoderm is regulated by the extra-embryonic ectoderm.

The anterior visceral endoderm (AVE) is an extra-embryonic tissue required for specifying anterior pattern in the mouse embryo. The AVE is induced at the distal tip of the 5.5 dpc embryo and then migrates to the prospective anterior, where it imparts anterior identity upon the underlying epiblast (the tissue that gives rise to the embryo proper). Little is known about how the AVE is induced and...

متن کامل

Morphogenetic Requirements for Embryo Patterning and the Generation of Stem Cell-derived Mice: A Dissertation

Cell proliferation and differentiation are tightly regulated processes required for the proper development of multi-cellular organisms. To understand the effects of cell proliferation on embryo patterning in mice, we inactivated Aurora A, a gene essential for completion of the cell cycle. We discovered that inhibiting cell proliferation leads to different outcomes depending on the tissue affect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Developmental biology

دوره 312 1  شماره 

صفحات  -

تاریخ انتشار 2007